Extremal Length Estimates and Product Regions in Teichmüller Space
نویسنده
چکیده
We study the Teichmüller metric on the Teichmüller space of a surface of finite type, in regions where the injectivity radius of the surface is small. The main result is that in such regions the Teichmüller metric is approximated up to bounded additive distortion by the sup metric on a product of lower dimensional spaces. The main technical tool in the proof is the use of estimates of extremal lengths of curves in a surface based on the geometry of their hyperbolic geodesic representatives.
منابع مشابه
Length spectra and the Teichmüller metric for surfaces with boundary
We consider some metrics and weak metrics defined on the Teichmüller space of a surface of finite type with nonempty boundary, that are defined using the hyperbolic length spectrum of simple closed curves and of properly embedded arcs, and we compare these metrics and weak metrics with the Teichmüller metric. The comparison is on subsets of Teichmüller space which we call “ε0-relative ǫ-thick p...
متن کاملOn Length Spectrum Metrics and Weak Metrics on Teichmüller Spaces of Surfaces with Boundary
We define and study metrics and weak metrics on the Teichmüller space of a surface of topologically finite type with boundary. These metrics and weak metrics are associated to the hyperbolic length spectrum of simple closed curves and of properly embedded arcs in the surface. We give a comparison between the defined metrics on regions of Teichmüller space which we call ε0-relative ǫ-thick parts...
متن کاملStrata of Abelian Differentials and the Teichmüller Dynamics
This paper focuses on the interplay between the intersection theory and the Teichmüller dynamics on the moduli space of curves. As applications, we study the cycle class of strata of the Hodge bundle, present an algebraic method to calculate the class of the divisor parameterizing abelian differentials with a non-simple zero, and verify a number of extremal effective divisors on the moduli spac...
متن کاملExistence of Extremal Solutions for Impulsive Delay Fuzzy Integrodifferential Equations in $n$-dimensional Fuzzy Vector Space
In this paper, we study the existence of extremal solutions forimpulsive delay fuzzy integrodifferential equations in$n$-dimensional fuzzy vector space, by using monotone method. Weshow that obtained result is an extension of the result ofRodr'{i}guez-L'{o}pez cite{rod2} to impulsive delay fuzzyintegrodifferential equations in $n$-dimensional fuzzy vector space.
متن کاملOn the inclusion of the quasiconformal Teichmüller space into the length-spectrum Teichmüller space
Given a surface of infinite topological type, there are several Teichmüller spaces associated with it, depending on the basepoint and on the point of view that one uses to compare different complex structures. This paper is about the comparison between the quasiconformal Teichmüller space and the length-spectrum Teichmüller space. We work under this hypothesis that the basepoint is upper-bounde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996